GEOMETRY-A-Summer Skills Set

Algebra Concepts

	1. Evaluate within grouping symbols Helpful	Examples:	$3^{2}(5-3)^{3}+3$	$4+12 \times 3-8 \div 4$
Hints	3. Multiply and divide in order $(\mathrm{L} \rightarrow \mathrm{R})$		$=3^{2}(2)^{3}+3$	$=4+36-2$
	4. Add and subtract in order $(\mathrm{L} \rightarrow \mathrm{R})$		$=9(8)+3$	$=40-2$
	5. Simplify as needed * A number next to a grouping symbol means multiply.	$=72+3$	$=38$	
		$=75$		

Evaluate each expression.

1. $6-5(7-5)^{3}+5$
2. $(4+5)-8+2(3)$
3. $(6-3)^{2}+12-8 \div 2$
4. $36 \div 2(5-1)^{2}$
5. $-4+5(7-4)-(-3) \div 3$
6. $-7(8)+4(2)-(6+1)^{2}$
Evaluate each expression for $s=-3$ and $v=2$
7. $s v^{2}$
8. $(s v)^{2}$
9. $-s^{2}+2 s-4$
10. $s^{2}-v^{2}$
11. $(s-v)^{2}$
12. $2 s^{2} v$

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Score

Helpful
Hints

The solutions of a quadratic equation are the x-intercepts of the graph of the corresponding parabola. There can be two real solutions, one real solution, or no real solution.

- First bring everything to one side (set the equation equal to 0).
- When there is no linear term $(\mathrm{b}=0)$, get x^{2} by itself and take the square root. Two answers result.
- If the quadratic expression can be factored easily, then factor, set each factor equal to zero and solve.
- When factoring is not easy or not possible, use the quadratic formula or solve by calculating the zeros on your graphing calculator.

The quadratic formula: If $\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}=0$, then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Solve each equation by the indicated method. When necessary, round answers to two decimal places.
Solve questions 1-3 by using square roots.

1. $k^{2}=16$
2. $x^{2}+7=25$
3. $2 m^{2}+24=10$

Solve questions $\mathbf{7 - 9}$ by using the quadratic formula. Check your answers by graphing.
4. $4 g^{2}+8 g+7=4$
5. $5 x^{2}=18$
6. $9 n^{2}-7 n-4=0$

1.
2.
3.
4.
5.
6.
Score

Solve each equation.

1. $x-6=10$
2. $\frac{\mathrm{x}}{5}=15$
3. $8 x=24$
4. $-\frac{4}{7} x=-8$
5. $a-\frac{1}{8}=\frac{5}{8}$
6. $3 y-4=20$
7. $\frac{t}{7}+2=1$
8. $3 r-(2 r+1)=21$
9. $44=5 y-8-y$
10. $75+7 \mathrm{c}=2 \mathrm{c}$
11. $\frac{3}{5} n+12=2 n-9$
12. $-\frac{1}{2}(16-2 y)=11$

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Score

13. $7(4 \mathrm{c}+1)-2(2 \mathrm{c}-3)=-23$
14. $\mathrm{x}-(-4 \mathrm{x}+2)=13$

Helpful Hints	Ordered pairs can be graphed on a coordinate plane. The first number of an ordered pair shows how to move across. It is called the \mathbf{x}-coordinate. The second number of an ordered pair shows how to move up or down. It is called the \mathbf{y}-coordinate. Example: To locate point B, move left (backward) to -2 and up to 4 .	$\begin{array}{\|l\|l\|} \hline(-2,4)^{\circ} & A \text {-axis } \\ \text { Quadrant II } & \text { Quadrant I } \end{array}$	
		origin	$\underset{x \text {-axis }}{ }$
		Quadrant III	Quadrant IV

Give the coordinates of the following labeled points.

1. A
2. B
3. C
4. D
5. E

Match the coordinates to the corresponding point labeled on the above graph.
6. $(-3,4)$
7. $(5,4)$
8. $(0,-5)$
9. $(2,3)$
10. (2, -2)

1.
2.
3.
4.
5.
6.
7.
8.
2.
9.
10.
Score

